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ABSTRACT
Many solvers and Domain Specific Languages focuses on very
simple Job-Shop Scheduling problems.

When more advanced scheduling functionality is needed one
often have to resort to expensive software suites.

We propose a Domain Specific Language with rich functional-
ity that translates scheduling problems into constraints and
uses the state-of-the-art SMT-solver Z3 for solving.

1. INTRODUCTION
In this paper we describe the widely known NP-hard Job-
Shop Scheduling Problem (JSSP) and propose a domain
specific language (DSL) that can be used to specify instances
of JSSP in a precise and readable manner.

We provide a parser for the DSL and a problem solver based
on the SMT-solver Z3 by Microsoft Research. One of the
goals of the DSL is to abstract away from the rather advanced
constraint generation to a simpler more intuitive level. The
DSL can easily be used for smaller scheduling problems or
act as a mid-end for more advanced problem generation.

The problem solver and the parser for the DSL are imple-
mented in the functional programming language F# using
the tools FsLex as lexer and FsYacc as parser generator. The
parser generation phase is out of the scope of this paper,
which is why we focus on the language design of the DSL in
Section 2, how constraints are generated in Section 7.7 and
how problems are solved using Z3 in Section 3.

2. THE JOB-SHOP SCHEDULING PROBLEM
In the JSSP we have a number of jobs each consisting of
a number of operations, also called tasks, with a specified
processing time. An operation is done on a specific machine.
In general literature engaged in the JSSP, e.g. [8][7][10], are
most often occupied with the simple version of the problem
with the following constraints:

• Only one job on one machine at a time, i.e. if we
consider a machine a resource, only unary resources
are supported.

• No pre-emption.

• Each job can only have one operation processed at a
time.

• Operations on jobs are scheduled in predetermined
given order.

The time required for all jobs to complete all of their oper-
ations is called the makespan. In the simple version of the
problem an objective typically is to minimize the makespan.

In this paper we say that a JSSP is a set of resources, jobs
and objective, we thereby never user the term task in the
following.

2.1 Problem complexity
The general Job-Shop problem has been proven NP-hard[12]
so no efficient algorithm solving this scheduling problem
exist. Therefore we practically have to solve it using brute-
force where there for a n×m problem exists (n!)m possible
solutions [7], where n denotes jobs and m machines.

By using a commercial available solver, which makes use of a
lot of clever and sophisticated heuristics, we can significantly
cut down the state-space that needs to be explored hence in
general solve these problems faster.

2.2 Constraint Satisfaction Problem
The constraint satisfaction problem (CSP) can be specified
as variables xi, i ∈ {1,...,n}, domains Di, i ∈ {1,...,n} and
constraints cj(x1,...,xn), j ∈ {1,...,m} and finding a solu-
tion (x1,...,xn) = (v1,...,vn) where vi ∈ Di, i ∈ {1,...,n} ∧
cj(v1,...,vn), j ∈ {1,...,m}, that is a solution is an assignment
(v1,...,vn) not violating any constraints. This can be ex-
tended to use objective functions by introducing h(v1,...,vn)
and adding one more conditional: minimize h(v1,...,vn).

JSSP can of course be expressed as CSP by letting variables
be start times of jobs, the domains are the possible start
times of jobs and we have some natural constraints on the
start times of jobs depending on which resources each job
uses. The objective function in the classical JSSP would be
to minimize the makespan.

In this paper we are primarily concerned about expanding
the JSSP, but the transition from JSSP to CSP is important
in that the Satisfiable Modulo Theories (SMT) problem can
be thought of as a certain form of CSP. The problem of SMT
is whether some logical formula is satisfiable in the context of
some background theory - in the JSSP the background theory
naturally will be integer arithmetic. The job of SMT-solver
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is to find an interpretation of a SMT-formula that makes
it true, e.g. the SMT-formula x + y > 5 ∧ x < 0 ∧ y > 0 is
satisfiable in the context of the theory of integer arithmetic,
because x 7→ −2, y 7→ 8 makes the formula true.

2.3 Related work
Much of the available literature [7][8] is primarily concerned
about techniques and implementation strategies of the solver
and not so much about the expressiveness of problems. As a
result a majority of the available benchmark suites for JSSP
are limited to simple examples with unary resources.

To the best of our knowledge only IBM’s CPLEX-suite is
concerned about allowing more advanced problem descrip-
tions, hence much of our inspiration is drawn from here.
Since CPLEX lack any real competitors, no benchmarks
supporting the use of CPLEX on advanced problems are
public available.

Concerning the task of proposing a domain specific language
[3] is great inspiration of what the language could contain
and how.

2.4 Performance evaluation
Many of the used problems uses functionality inspired from
CPLEX [6], so the performance evaluation will be done on
basis of the performance achieved benchmarking the free
90-day trial version of CPLEX on a collection of their own
examples.

Furthermore we will also evaluate and discuss the different
approaches of finding the best solution according to a given
objective:

• Satisfying the objective function using bi-section or a
lower-bounding iteratively method.

• A comparison of using Z3 via the API where constraints
are built programmatically or by parsing a problem in
the SMT-LIB format.

• Several different ways of setting and manipulating con-
straints using the Z3 API.

Notice we do not consider the use of other solvers as Z3
currently1 are considered the leading in terms of precision
and performance[11].

3. THE Z3 SOLVER
The state-of-the-art SMT-solver Z3 is developed by Microsoft
Research and is free to use for non-commercial purposes2. Z3
is used in different areas, e.g. software verification (SPEC#)
and test case generation (PEX). Recently (November 2012)
the source code of Z3 has been released to the public, and
is now available for further investigation as supplement to
the many papers written mainly by Leonardo de Moula and
1Z3 did not enter the SMT-COMP competition this year
(2012) due to their SMT-LIB2 format not being finished,
although the results from 2011 are still better than the
competitors results from 2012.
2Licensed under MSR-LA. This license allows users to redis-
tribute, copy, modify and experiment with Z3.

Spec#/Boogie generates logical verification conditions from a Spec# pro-
gram (an extension of C#). Internally, it uses Z3 to analyze the verification
conditions, to prove the correctness of programs, or to find errors on them. The
formulas produced by Spec#/Boogie contain universal quantifiers, and also use
linear integer arithmetic. Spec# replaced the Simplify theorem prover by Z3 as
the default reasoning engine in May 2007, resulting in substantial performance
improvements during theorem proving.

Pex (Program EXploration) is an intelligent assistant to the programmer. By
automatically generating unit tests, it allows to find bugs early. In addition, it
suggests to the programmer how to fix the bugs. Pex learns the program behavior
from the execution traces, and Z3 is used to produce new test cases with different
behavior. The result is a minimal test suite with maximal code coverage. The
formulas produced by Pex contains fixed-sized bit-vectors, tuples, arrays, and
quantifiers.

3 System Architecture

Z3 integrates a modern DPLL-based SAT solver, a core theory solver that han-
dles equalities and uninterpreted functions, satellite solvers (for arithmetic, ar-
rays, etc.), and an E-matching abstract machine (for quantifiers). Z3 is imple-
mented in C++. A schematic overview of Z3 is shown in the following figure.
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SAT solver
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Figure 1: Architecture of Z3 from [5]

Nikolaj Bjørner about Z3. Originally Z3 was written for
internal use in Microsoft which explains the lack of documen-
tation. The missing documentation naturally makes it hard
to know how to do things right when using Z3, which is why
the performance optimisations of the tool developed to solve
the extended JSSP are mainly made by our own empirical
experiences with Z3.

In the following we briefly describe the inner workings of
Z3, mainly by focusing on the architecture illustrated in
Figure 3. Z3 accepts the SMT-LIB format but also has a
variety of APIs for different programming languages, among
these the .NET API, which is what we are using to build
our solving tool for the extended JSSP. Z3 will simplify the
input and compile it into a data-structure consisting of a set
of clauses. Now Z3 works by combining several solvers; a
state-of-the-art SAT solver assigns truth values to atoms, a
so-called E-graph is build of the atoms and equalities asserted
by the SAT-solver. This E-graph has nodes that can point to
theory solvers, that can assign truth values to atoms as well
as producing fresh atoms that in turn is given to the SAT-
solver again. E-matching is used to instantiate quantified
variables from the E-graph - the E-matching in Z3 is done
by new efficient algorithms, which is the main reason for
the significant better performance of Z3 compared to other
SMT-solvers. [5] has a more detailed description of how Z3
works.

Z3 is heavily configurable. A look at the output of z3.exe
/ini? reveals that more than 250 parameters can be set on
the solver. Z3 will try to configure the solver in the best
way based on the input given, which is why we in this paper
have not spent much time on investigating these parameters
further.

4. EXTENDING THE PROBLEM
In the following we extend the presented version of the
JSSP. In Section 6 we propose a domain specific language to
describe the extended JSSP. In particular we want to extend
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the simple specification of the JSSP to include following
features:

• Precedence rules: Specify in which order tasks are
being processed.

• Discrete resources: Allow capacities above 1.

• Reservoir resources: Introduce consumable resources
with the availability of adding more capacity to re-
sources as time goes by.

• More objectives: Introduce new objectives, e.g. min-
imize the use of a specific resource.

• Weighted objectives: Give weights to different ob-
jectives.

• Multiple resource use: Allow tasks to use several
resources both by allowing the use of choosing between
resources but also by allowing a task to require the use
of all resources specified.

• Resource amount use: Specify the amount of a
resource used.

• Soft precedence constraints: Specify precedence
constraints that are preferable but not necessary.

The introduction of discrete resources and specifying the
resource amount used by a job, effectively makes it possible
to share a resource between several jobs as long as the total
use does not exceed the capacity of the resource.

Furthermore we also make a slight simplification by removing
the jobs-level, so that a problem consists of jobs where each
job has the same properties as a task.

With the features listed above we will be able to express
a broader class of problems, though we have some natural
bounds on which problem we will be able to specify and
solve. The solution to the original JSSP is a static schedule,
which means that the factors influencing a problem must be
specified in the problem. Naturally this means that problems
influenced by uncontrolled factors, e.g. the weather, sudden
breakdowns, etc. cannot be specified. As we give static
schedules as solutions, we require that everything influencing
the solution have to be explicitly specified in the problem.

5. EXAMPLES
The previous section leaves us with a problem specification
that has the features to solve a broad class of scheduling
problems. In the following we list two example problems of
very different nature, that should give rise to the domain spe-
cific language. The evaluation in Section 8 contains further
examples to investigate.

5.1 Tiramisu recipe
This example is a subset of the tiramisu recipe described in
[13]. We have extended the example with more advanced
functionality in order to better model reality and emphasize
the expressiveness of our language. For example in the
original example some tasks needed a bowl, sometimes a

regular bowl and sometimes a heatproof, in this example we
allow steps that previously requested a regular bowl to also
accept a heatproof-bowl, this can possibly help shorten the
overall makespan.

Furthermore [13] is only concerned about the order of carry-
ing out the recipe, and see what can be carried out concur-
rently, so they have no notion of time, meaning that all jobs
take equal amount of time. We have here augmented each
task with a duration we believe to be realistic.

Finally we have added two precedence relations, a soft and
a hard.

1 Resources {
2 consumable mascarpone 225
3 consumable milk 430
4 consumable espresso 360
5 consumable sugar 175
6 semaphore woodenSpoon
7 semaphore saucepan
8 semaphore bowl
9 semaphore heatProofBowl

10 }
11 Jobs {
12 MakeCreamTopping {
13 duration 3
14 use saucepan & heatProofBowl
15 consume 430 milk
16 consume 100 sugar
17 produce creamTopping
18 }
19 AddMascarpone {
20 duration 2
21 use woodenSpoon & (bowl |

heatProofBowl )
22 consume 225 mascarpone
23 consume creamTopping
24 produce custard
25 }
26 MixCoffeeSyrup {
27 duration 4
28 use bowl | heatProofBowl
29 consume 360 espresso
30 consume 75 sugar
31 produce coffeeSyrup
32 }
33 MakeLayers {
34 duration 3
35 consume coffeeSyrup
36 consume custard
37 produce tiramisu
38 }
39 MakeCreamTopping > addMascarpone
40 MakeCreamTopping << MakeLayers
41 }
42 O b j e c t i v e s {
43 minimize makespan
44 }

Running this example gives rise to the solution at Figure
2. At this figure we can see which sub-tasks can be carried
out in parallel to shorten the overall cooking time. We could
easily get a more realistic plan taking the number of available
chefs into account by modelling this number of chefs as an
additional resource and let each sub-task that requires active
participation from a chef use such a resource.

5.2 Holiday planning
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Figure 2: The most effecient way to carry out the
tiramisu recipe by disregarding the currently unsup-
ported OR-operator. Notice that the schedule can-
not be carried out satisfying the soft-precedence con-
straint, so that is disregarded in order to make the
schedule satisfiable.

A sub problem of the Nurse Scheduling Problem described
in [1] is the holiday planning problem of nurses at a hospital.
A hospital have a minimum need of nurses at all times, and
nurses have some preferred weeks where they want to plan
their holidays. The optimal holiday plan is where as many
nurses as possible have as many of the preferred weeks as
possible assigned as their holiday.

This problem can be modelled with the proposed features
in the previous section: A discrete resource can represent
the number of free holiday weeks at the hospital at any time.
For each nurse we need a discrete resource with capacity 1
indicating whether a nurse has holiday or not. w jobs are
needed for each nurse, where w is the number of holiday
weeks per nurse. Each of these jobs will use the resource
representing the number of free holiday weeks. Finally soft
constraints can be used to express the preferred weeks a
nurse want to have hers/his holiday. The soft constraint is
expressed as a real time constraint on the tasks for each nurse.
This means that each time unit in this example represents a
week.

1 Resources {
2 semaphore holiday 3
3 semaphore nurse1
4 ...
5 semaphore nurseN
6 }
7 Jobs {
8 Nurse1 Holiday 1 {
9 use holiday & nurse1

10 }
11 Nurse1 Holiday 2 {
12 use holiday & nurse1
13 }
14 ...
15 NurseNHoliday 1 {
16 ...
17 }
18 Nurse1 Holiday 1 > 3
19 Nurse1 Holiday 1 < 5
20 Nurse1 Holiday 2 > 3
21 Nurse1 Holiday 2 < 5
22 ...
23 NurseNHoliday 1 > 4
24 }
25 O b j e c t i v e s {
26 maximize satisfied soft constraints
27 }

In the specification above we have an example with N nurses
where at most 3 nurses can have their holidays in the same
week. As can be seen the number of tasks is the number
of nurses multiplied by the number of holidays weeks per
nurse. The soft constraints for Nurse1 state that he/she
prefer holiday in weeks 3, 4 and 5. We see the number of soft
constraints can vary between zero to the number of weeks
each nurse has preferences multiplied by two because we need
to express the preferred week as between week x and y.

The specification above is obviously not that simple and it
is clear that for just a few nurses we will see a quite large
problem description, but nonetheless we are still able to
express the problem with the proposed features.

This example also shows that the DSL and the tool attached
to the DSL should be targeted towards mid-end use, i.e.
a front-end used to enter data and abbreviate it into the
form of the above should be build. The developer building
this front-end should only be concerned about representing
the data, our tool will in turn create the constraints of the
problem and solve it by using Z3. In this way the developer
still have the ability to express a complex problem, but need
not to care about how the rather complex constraints of a
problem should be formulated.

6. LANGUAGE DESIGN
The examples in the previous section give rise to the Job-
Shop Scheduling Problem Language, abbreviated JSPL. In
designing the language it is important for us that the resulting
language is easy to read, in the sense that one should be able
to quickly understand what a specification of a problem is
trying to solve. With this said we realize that the problems
that can be modelled with this language is often much more
complex than e.g. the tiramisu example, which is why we
see the language and tool as a mid-end tool targeted towards
organizations and people that need to solve problems but do
not have the resources to formulate the advanced constraints
themselves.

One can of course specify problems directly in the language,
but we would encourage to build a front-end on top of the tool.
This is acceptable because in most cases we would expect
that the tool will used to solve problems of similar kind
by the same people, e.g. room assignments at universities.
Because of this our focus has turned a bit away from making
it very easy to understand at a glance and over to focus more
on the actual language features instead.

6.1 EBNF Specification
In the following we present the language formulated in the
EBNF style derived from regular expressions. This means
that the usual regular expression operators: trailing * for 0
or more, trailing + for 1 or more and trailing ? for optional
applies. Keywords are highlighted with the type writer
font.

〈problem〉 ::= 〈resources〉? 〈jobs-precedences〉 〈objectives〉
〈resources〉 ::= ’Resources {’ 〈resource〉+ ’}’
〈resource〉 ::= ’semaphore’ 〈ID〉 〈INT〉?
| ’consumable’ 〈ID〉 〈INT〉? (’/’ 〈INT〉)?
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〈jobs-precedences〉 ::= ’Jobs {’ 〈job〉+ 〈precedence〉* ’}’

〈job〉 ::= 〈ID〉 ’{ duration’ 〈INT〉 (’use’ 〈resource-use〉)?
〈prod-con〉* ’}’

〈resource-use〉 ::= 〈INT〉? 〈ID〉
| 〈resource-use〉 (’|’ | ’&’) 〈resource-use〉
| ’(’ 〈resource-use〉 ’)’

〈prod-con〉 ::= (’produce’ | ’consume’) 〈INT〉? 〈ID〉

〈precedence〉 ::= 〈ID〉〈pre-op〉(〈ID〉 | 〈INT〉)

〈pre-op〉 ::= ’<’ | ’«’ | ’>’ | ’»’

〈objectives〉 ::= ’Objectives {’ 〈objective〉+ ’}’

〈objective〉 ::= 〈INT〉? ’minimize makespan’

Where 〈INT 〉 is a positive integer and 〈ID〉 is an identifier.
A problem of the form above has to adhere to a set of rules
formally described in the following sections.

6.1.1 Problem P
A problem consists of a set of resources R, jobs J , precedences
C and objectives O:

P = 〈R, J, C, O〉

6.1.2 Resources R
Resources are something that can be used, consumed or
produced by jobs. We have two kinds of resources:

Semaphore This is either a unary or discrete resource. This
kind of resource can only be used by a job. E.g. if a
job states that it uses 5 of a semaphore resource with
the capacity 7, another job can use the same resource
at the same time, as long as it only requires ≤ 7− 5.

Consumable This is a reservoir resource; more precisely it
is a resource where the capacity is either lowered or
raised permanently when jobs interacts with it. We say
that jobs either produces or consumes a consumable
resource.

A resource Rr is described as:

Rr = 〈idr, cr, mr, tr〉 ∈ R

idr is the name of the resource, cr ∈ N0 is the initial capacity
of the resource, mr ∈ N+ is the maximum capacity for the
resource and tr ∈ {semaphore, comsumable} is the type of
the resource.

From the grammar we can see that if a resource is of type
semaphore a maximum capacity cannot be set. If no capacity
is set it is implied that the resource is a unary resource, and
the capacity cr is 1. Semaphore resources with capacity
cr > 1 is called discrete resources, and the domain of cr is
restricted to N+ (T.1). If the resource is of type consumable
a maximum capacity can be set and cr ≤ mr (T.2) should
hold. If no maximum capacity is set it is implied to be ∞.

6.1.3 Jobs J
Jobs are the entities being scheduled. A job is described by:

Ji = 〈idi, si, pi, ri, pci〉 ∈ J

idi is the name of the job, si ∈ N0 is the start time of the
job, pi ∈ N0 is the duration or processing time of the job,
ri is a set of all the resources used by the job and pci is a
set of all the resources produced or consumed by the job.
The grammar shows that all of this except the start time
is initial described by the user. The start time is what the
solver should find based on the constraints generated.

ri is not just a set of resources but a set of pairs: (Rr, uir) ∈
ri | Rr ∈ R (T.3), where Rr is a resource and uir ∈ N+ is
the amount used by job Ji of this resource Rr. The grammar
allows to leave out uir, in these cases the use is implied to
be just 1. The following must be fulfilled:

∀(Rr,uir) ∈ ri : tr = semaphore ∧ uir ≤ cr (T.4)

pci is also a set of pairs (Rr, air) ∈ pci | Rr ∈ R (T.5), where
Rr is a resource and air ∈ Z \ {0} is the amount job Ji

produces or consumes of resource Rr. air is positive if the
resource is produced and negative if it is consumed. Here we
see that the input specification by the user is transformed
when a problem is created in the program - users never
enter a negative number, but only state whether the job
consumes or produces a resource, it is the job of the parser
to generate the correct set of produce and consume resources.
The grammar allows to leave out the amount, in these cases
it is implied that the amount is 1. The following must be
fulfilled:

∀(Rr,air) ∈ pci :
tr = consumable ∧ (air < 0 ∨ (air > 0 ∧ air ≤ mr)) (T.6)

The amount consumed can at no point exceed the current
capacity cr of a resource Rr, but this cannot be checked stat-
ically because the initial capacity of a consumable resource
is allowed to be lower as a job consuming it, as another job
can produce it before.

If a job Ji produces the amount air of a resource Rr it
means that after si + pi the capacity is now cr = cr + air.
If a job Ji consumes the amount air of a resource Rr the
capacity of the resource is cr = cr + air (because air in this
case is negative we also add air to cr) immediately after si.
This gives the two obvious constraints that at any time the
capacity a consumable resource cannot exceed its maximum
capacity and it cannot be below 0.

When a job can be executed it is naturally constrained by
the availability of a resource; when it is not used by another
job, when the capacity is large enough for the job to consume
or when it can be produced without exceeding the maximum
capacity.

6.1.4 Precedences C
In JSPL precedences is the closest you get to setting con-
straints directly. We have two kinds of precedences; soft and
hard, the main difference between soft and hard precedences
is that soft precedences can be removed completely if no
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satisfiable schedule can be found, strategies for doing this
is described later in the paper. Besides that a precedence
can be described as a before-after relation between jobs or
before-after relation between jobs and real times. Formally
a precedence is described by:

Ci = 〈e1, rel, e2〉 ∈ C

Where e1 ∈ J and e2 ∈ J ∪N0 (T.7) and the relation rel can
be either one < or > meaning it is a soft precedence or it can
be two succeeding < or > meaning it is a hard precedence.
The meaning of rel is described below:

> : e1 ∈ J ∧ e2 ∈ J : s1 ≥ s2 + p2

∨ e1 ∈ J ∧ e2 ∈ N0 : s1 ≥ e2

In other words if e1 and e2 are jobs, e1 can start as soon e2
has finished, if only e1 is a job it can start after the time e2
has passed.

< : e1 ∈ J ∧ e2 ∈ J : s1 + p1 ≤ p2

∨ e1 ∈ J ∧ e2 ∈ N0 : s1 + p2 ≤ e2 (T.8)

Again, in other words if e1 and e2 are jobs, e2 can start as
soon e1 has finished, if only e1 is a job it has to end no later
than the time e2.

From the above we an only deduce one requirement that we
can check statically; namely that the last case (T.8).

All of the rules marked with (T.x) in the above is imple-
mented as a static type checker before the actual solving of
the problem takes place. The file TypeChecking.fs contains
references to this section.

7. CONSTRAINTS
This section describes which constraints are required from our
problem description and the motivation behind our choices.
In Section 7.7 we briefy describe how the constraints are
generated using Z3.

7.1 Hard Precedences
The hard-precedence rules are quite simple as they just
define the order on how the jobs should be executed. The
precedences constraint are described formally in the previous
section.

7.2 Soft precedences
The soft-precedence rules denotes rules that do not have to
be enforced but are preferable to do. There are countless
ways to interpret this, but we currently chose to define it as;
If the model is not satisfiable treating the soft-precedences
as hard-precedences, all soft-precedences are removed.

There are some reasoning and limitations to this rather rough
approach, namely:

• These soft-precedence are not taken into consideration
when trying to optimize the objective function. In some
cases we may be able to achieve a much better target
value by removing soft-precedence(s).

• In some cases it might be preferable to just alter one or
more of the soft-precedences than entirely remove them.

The alteration would be to push the precedence-value
by some pre-determined fraction or value.

• When we remove the soft-precedence, we could try to
fulfil as many as them of possible. This would require
solving the problem n! times where n is the number of
soft precedences, and as these problem generally are
computational intractable this could lead to extreme
long running times when solving. We could bring down
the required number of tries by just removing the con-
straints one by one, and then stop once the model gets
satisfiable. The removal of precedences should probably
not happen by random, so some sort of removal-order
should be imposed; but this introduces the problem
when the only un-satisfiable precedence is in the bot-
tom, so that all other precedences needs to be removed
in order to make it satisfiable.

We think that a linear-weighting scheme can overcome many
of these problems, but this requires careful consideration
and technique limiting the greatly increased state-space that
needs to be considered.

As stated before a JSSP is a constraint satisfaction prob-
lem, these kinds of problems can be augmented with soft
constraints as well. [9] describes how the general approach
to supporting soft constraints is to associate costs to soft
constraints and finding the minimum aggregated cost. As
we stated in Section 2.2 JSSP can be expressed as a CSP,
when adding soft constraints we have a special kind of CSP
namely the weighted CSP, or WCSP. If we see a WCSP as a
tree of solutions, there are a variety of different approaches
to solving WCSP of which [9] describes how branch-and-
bound can be used to find a partial solutions and create sub
problems of the original problem by keeping track of the
cost of the current solution and comparing it to removing a
constraint. The branch-and-bound algorithm can be used to
decide whether a sub-tree should be pruned or not.

Future work includes researching on how to efficiently support
this increased expressiveness of problems by the use of soft-
precedences, including how much work should be done before
giving a problem to Z3 and how much work Z3 itself should
take care of.

7.3 Initialization of the upper-bound
As the computational complexity of calculating the resource
use is greatly determined3 by the length of the initial upper-
bound UBinit, we try to bound this interval as much as
possible before use by setting:

UBinit = UBseq + ΣJi∈J pi

Where UBseq is the upper-bound achieved by disregarding
all resources, only constrained by the precedence rules and by
the requirement that the tasks should be placed sequentially,
although absolute less than precedences needs to be ignored
for this computation as they might lead to a false unsatisfiable
conclusion. As the unary-resource rule is used to ensure this,
the computational complexity are just determined by the
amount of jobs and does not require any specified initial
upper-bound.
3See Section 8 for the size of impact.
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We need to add all jobs duration times, as the producible
and consumable resources in conjunction with the absolute
precedence constraints can exceed the bound found by UBseq

as they can implicitly model additional precedence rules4.

If the given schedule can be solved, the tightest upper-bound
UBbest is hence constrained by UBbest ≤ UBinit as forcing
all jobs to start at UBseq all real-times precedence constraints,
which are the only thing that can give rise to gaps in a
schedule, are practically disregarded and we can just add the
sum of the duration of each task in order to get the longest
possible makespan of any given schedule.

j1 j2 j3

UB

j1j2 j3

UB

seq

seq

t

t

Figure 3: (u) Calculating UBseq from the precedence
rules.(l) UBinit can exceed that of UBseq when ac-
counting for producible and consumable

For clarification consider the following example:

Regard Figure 3 where j2 is not allowed to start
before time t and j3 should follow j2. j1 consumes
a resource which is only generated by j3 hence im-
plicitly models the constraint that j1 should come
after j3. As calculating UBseq cannot account for
the later implicit precedence, j1 is just placed be-
fore j2 as this gives rise to the shortest makespan.
The calculation of UBseq is therefore potentially
exceeded once trying to actually place the jobs,
as a result we need to use UBseq + ΣJi∈J pi to be
safe.

This function also serves the purpose of checking whether
the model are even satisfiable at all although it cannot catch
all unsatisfiable problems, some will first be catched during
the actual solving. Naturally if a problem is shown to be
unsatisfiable we abort here before the actual solving.

Further work involves creating a more precise, hence tight,
estimation of UBinit.

7.4 Semaphore resources
We define the set JURr | Rr ∈ R as jobs using the semaphore
resource Rr. For unary resources the following constraints
expressing that two jobs using the same unary resource

4As in the tiramisu example

cannot be executed at the same time are needed:

∀Rr ∈ R | cr = 1 ∧ tr = semaphore :
∀Ji ∈ JURr :

si + pi ≤ sj ∨ sj + pj ≤ si

where Jj ∈ JUr \ Ji

For discrete resources we need a more sophisticated way of
describing constraints, as a resource should be available to
more than one job at a time. [2] describes how we can decide
whether a discrete resource can be used by more jobs or if the
current jobs using it makes it impossible for other to use it as
well. The basic idea is that for every time t we need to check
that the resource usage of resource Ri ∈ R | ti = semaphore
does not exceed ci. We let the variable xit ∈ {0,1} denote
whether a job Ji is executed at time t:

∀Ji ∈ J, ∀t ∈ {0,...,UB} :
if ((si ≤ t) ∧ (si > t− pi)) (7.4.1)

then xit = 1
else xit = 0

Note that we assume the lower bound is always 0. The above
can now be used to express the following constraint for each
discrete resource:

∀Rr ∈ R | cr > 1 ∧ tr = semaphore :
t ∈ {0,...,UB} :∑

Ji∈JURr

ui · xit ≤ cr

Where ui is the amount of a resource a job uses. This con-
straint basically just sums all the use of a resource Rr at time
t and makes sure it does not exceed the capacity cr of that
resource. [2] proposes some optimizations specifically when
encoding constraints to SMT-solvers, namely to introduce
the following:

yi ↔ (si ≤ t) ∧ (si > t− pi)

And replacing (7.4.1) by yi. Their findings are that on smaller
instances (problems with less than 50 job descriptions) this
gives better performance results, but as we are encoding the
value xit as a function in Z3 by using the for all quantifier we
do not need to and cannot make this optimization, because
Z3 already do some simplifications itself, see Section 3.

The discrete resource notation is more expressive, and can
also be used to model the unary resources, but as the use
of unary resources are considered quite common and the
unary resource formula are less computational demanding
we choose to differentiate between these two.

7.5 Consumable resources
In the following section we define JP CRr | Rr ∈ R as the set
of jobs producing or consuming the consumable resource Rr.

In the previous section we saw that we need the following
constraint on each consumable resource Rr:

∀t ∈ {0,...,UB} :
cr ≥ 0 ∧ cr ≤ mr

7



If mr is ∞ we only need the first inequality in the formula
above. A way to express this is by letting fit denote whether
a job Ji has been executed at time t:

∀Ji ∈ J,∀t ∈ {0,...,UB} :
if (t ≥ si + pi)

then fit = 1
else fit = 0

We can now define the capacity crt of each consumable
resource Rr on each time t:

∀Rr ∈ R | ∧tr = consumable :
t ∈ {0,...,UB} :

crt = cr +
∑

Ji∈JP CRr

air · fit +
∑

Ji∈JP CRr |air<0

air · xit

The first of the above summations will make sure that the
produced or consumed amount air of jobs already executed
at time t counts toward the new capacity crt, the second will
make sure that the consumed amount by jobs consuming a
resource is subtracted immediately after the job has started
execution. cr is the initial capacity of the resource which of
course as well should be taken into account when calculating
the current capacity.

Finally we are able to state the constraints needed to make
sure consumable resources are never exceeding their maxi-
mum or going below 0:

∀Rr ∈ R | tr = consumable :
t ∈ {0,...,UB} :

crt ≥ 0 ∧ crt ≤ mr

Where the last inequality is only necessary if mr is not ∞.

7.6 Objective Functions
The support of different objectives is as of now not imple-
mented and is thereby unfortunately not something the user
can specify. We currently only have support for this single
objective functions:

• minimize makespan the general objective used through-
out the paper, which instructs Z3 to find the shortest
possible schedule.

The calculation of this proceeds by initially setting UB =
UBinit, i.e. that were only interested in schedules less or
equal to this value. Once such a schedule is found, we proceed
by bi-sectioning until the best possible schedule is found. The
simplified bisection algorithm is shown below:

1 rec bisection min max =
2 if min = max then
3 min
4 else
5 let x = (min + max) / 2
6 let b = Z3.(b => (x < UB))
7 let status = Z3.Check(b)
8 match status with
9 | SATISFIABLE -> bisection min x

10 | UNSATISFIABLE -> bisection x max
11 | UNDECIDABLE -> abort

This gives rise to precisely log2UBinit checks that needs
to be performed. As here shown the alteration is imple-
mented using Z3s support for retraction of statements, i.e.
when performing Z3.check(b) we solve the context with the
additional requirement that b = true.

We found that, somehow, Z3 uses much less time on con-
cluding something being unsatisifiable rather than satisfiable.
So we tried a similar approach iteratively bounding it from
below, where we set an initial stride to log2(UBinit) and low
to 0. As long as it is unsatisfiable we continue with the same
stride, when we get a satisfying assignment we go back to
the last unsatisfiable assignment and iteratively increases the
bound with a stride of 1.

1 rec iterative low stride =
2 let b = Z3.(b => (x < UB))
3 let status = Z3.Check(b)
4 match status with
5 | SATISFIABLE when stride = 1 -> low
6 | SATISFIABLE -> iterative (low -

stride ) 1
7 | UNSATISFIABLE -> iterative (low +

stride ) stride
8 | UNDECIDABLE -> abort

This gives rise to at most 2log2UBinit iterations.

A comparison in terms of performance can be seen in Section
8.

Future work includes support of

• minimize usage <resource> Finds a schedule mini-
mizing the usage of a given resource.

• minimize output <consumable> Finds a schedule that
executes all tasks so that the value of a given consum-
able resource is as low as possible.

Naturally these should also be implemented with maximize.

As well as allowing for solutions composed of several objective
functions. This would need a weighting scheme, similar to
that of soft-precedences, to specify the importance of each
objective which would lead to an explosion in the state-space
that needs explored. Naturally techniques limiting this would
need to be researched.

7.7 Constraint Generation in Z3
In the previous sections we saw which constraint are needed
for a problem. In the following we will explain how con-
straints are described in Z3.

When we encode JSSP into a SMT-formula we only have one
kind of variable of interest: the start time of each job. For
each job Ji in J a IntConsts variable j_idi that represents
the start time is created. These variables are the unknown
in the SMT-formulation of the JSSP, hence these are the
variables Z3 should find an satisfiable assignment to. As
described in the previous section, the bisection and iterative
method focuses on narrowing the upper bound on the start
times because the only objective supported is minimizing
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the makespan. If we had another objective to minimize the
usage of a resource, we would still be interested in the start
times of jobs, but an additional constraint on the total use
of resources would be introduced and the bisection method
would focus on narrowing this total use rather than narrowing
the upper bound on the total makespan.

The variables xit and fit are modelled with quantifiers in Z3.
The following shows how it is encoded in SMT-LIB format:

1 (declare -fun x_value (Int Int Int) Int)
2 ( assert ( forall (task Int) (time Int) (dur

Int)
3 (= ( x_value task time dur)
4 (ite (and (<= task time)
5 (> task (- time dur)))
6 1
7 0))))

The Z3 API for .NET is used in an imperative fashion, which
is why the code is a mixture of functional programming and
imperative programming. Variables are created as integer
constants on the Z3 context. Constraints are also created on
the context. When a constraint is build it has to be asserted
on the Z3 solver, which is created from the context. How xit

is implemented and how constraints are generated in general
in Z3 can be inspected further in the file Solver.fs.

8. EVALUATION
In this section we evaluate the performance of our implemen-
tation as briefly described in Section 2.4.

As said before the source code of Z3 got released to the public
during the period of writing this paper, and no literature or
documentation explaining the best practices were available
to us, as result some of our design choices are based on these
measurements treating Z3 in a black-box manner.

For evaluation we use the following four scheduling problems
found in the example folder shipped with CPLEX, naturally
these are translated into our representation:

sched_intro This is a basic problem that involves building
a house; the masonry, roofing, painting, etc. must
be scheduled. Some tasks must necessarily take place
before others, and these requirements are expressed
through precedence constraints.
This is a simply problem consisting of 10 jobs and 14
precedence constraints. sched_intro_mod is a modifi-
cation of this problem, making it harder to solve.

sched_production A chemical manufacturer produces batches
of specialty chemicals to order. An order consists of
a set of jobs. Each job has an optional precedence
requirement, arrival week of the job, duration of the
job in weeks, the week that the job is due, the number
of reactors required, distillation columns required, and
centrifuges required. The objective is to minimize the
completion time of all orders.
This is modelled using 8 different jobs, using 18 prece-
dence constraints and a 3 semaphore resources.

sched_shipload The problem consists of scheduling the
loading of a ship.

This is modelled using 34 different jobs, using 43 prece-
dence constraints and a single semaphore resource with
capacity of 8.

sched_cumul This is a problem of building five houses in
different locations; the masonry, roofing, painting, etc.
must be scheduled. Some tasks must necessarily take
place before others and these requirements are ex-
pressed through precedence constraints. There are
three workers, and each task requires a worker. There
is also a cash budget which starts with a given balance.
Each task costs a given amount of cash per day which
must be available at the start of the task and Payments
are received on at pre-determined dates.
This is a fairly complex problem modelled using 50
jobs, 130 precedence constraints, a semaphore resource
and a consumable resource.

All tests has been carried out using an Intel Core i5 3317U
processor and are averaged over 10 runs.

8.1 Comparison of the Z3-API and SMT-LIB
It is common for tool-chains to use some sort of standardized
file-representation as input for the convenience of the user.
Using the recognized SMT-LIB format the objective functions
can only be implemented by the use of iteratively computing
solutions with the use of constraints on the makespan, this
means that we continuously needs to edit the SMT-LIB
file used for solving, and that Z3 needs to parse this input
repetitively, not to mention destroying its entire context and
learned lemmas on each iteration.

We have previously made such an prototype [4], which is
here used as basis for comparison, we use the same bi-section
algorithm and constraint generating algorithms on both,
so that any performance difference can be ascribed to the
difference in interaction with the solver.

The old prototype did not ensure a safe initial calculation
of the upper-bound as described in Section 7.3, it just used
ΣJi∈J pi as UBinit, we call this SMT-LIB unsafe. So during
the comparison we tested this implementation at the same
upperbound setting as the old, called API unsafe, as well as
with a safe estimate API safe.

The difference in performance can be seen at figure 4 from
which we can conclude that our new fine-tuned implemen-
tation is almost twice as fast as the old prototype. Even
when comparing the safe API against the unsafe SMT-LIB
prototype we still complete slightly faster.

These results also tells us the impact of not choosing the ini-
tial UBinit as tight as possible, i.e. the unsafe benchmarks
worked for these instances having an UBinit just half of the
safe size.

8.2 Comparison of bi-sectioning and lower-
bounded objective functions

We noticed that in general it was more costly in terms of
execution speed calculating satisfiable schedules than unsat-
isfiable ones, so we benchmarked the bi-section algorithm
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Figure 4: Comparison using SMT-lib presentation
or API. API safe has an UBinit twice as large as the
other two.

against the iteratively lower-bounding method. The results
can be inspected at figure 5.

One thing to note is that bisection uses exactly log2UBinit

iterations, whereas the iterative uses at most 2log2UBinit:
The iteratively lower-bounding method is in general much
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Figure 5: Comparison of objective strategies and
CPLEX.

faster than doing bisection due to satisfiable conclusions in
general being harder for Z3 to compute than unsatisfiable
ones. Although when testing upperbounds close to what is
achievable the execution time for at satisfiable / un-satisfiable
conclusion seems to be equal.

Comparing the performance against the commercial off-the-
shelve scheduling suite in CPLEX from IBM, we see that our
solution lacks way behind. The only details about CPLEX’s
engine available is that they also model their problems as
CSP and uses a tailor-made solver on these constraints.

Most likely CPLEX use another representation or algorithm
to model their discrete and consumable resources as their
execution time in many cases seems unaffected of the capacity
and use of these whereas ours execution time is very much
dependent on this.

Unfortunately proved sched-cumul to be hard for our solver,
using the iteratively we found a solution within 5 hours.
Bi-sectioning were not even close given the same timeframe.

The issue in this schedule is the length of the optimal schedule
being quite high, which greatly increases the computational
complexity as previously discussed.

8.3 Empirical findings of constraint-generation
We have tried a lot of different techniques to improve the
performance. Some of them are mentioned here:

• We have tried implementing the solver using stacks to
represent the assertions, via. the push and pop state-
ments as well as assumptions that allows retraction of
assertions. The former instructs Z3 to use an incre-
mental internal solver and requires recomputing the
lemmas upon pop(). The approach using assumptions
lets Z3 automatically configure which solvers to use
and allows for reuse of learned lemmas. Overall, to our
great surprise, the push/pop approach were slightly
faster.

• We have also tried regenerating all the discrete-resource
constraints on each iterations, instead of just hoping Z3
would disregard those unreachable by the UB variable.
The overall execution time were often much lower than
by reuse, but varied very much with the problem in
question.

• When we limit our problems to only consist of unary-
resources, very large problems becomes easy solvable
with execution times not that far from CPLEX’s.

9. CONCLUSION
We have here proposed a domain specific language for ad-
vanced Job Shop Scheduling Problems with support of dis-
crete resources, consumable resources, several resource use,
soft constraints and several objective functions. A mid-end
tool parsing and solving these kinds of problems has been
developed - although several resource use (only partly), soft
constraints and several objective functions has not been
implemented.

By regarding the scheduling as a constraint satisfaction prob-
lem we can solve it using a third-party solver. We have here
used Z3 as it, as the time of writing, is the best performing
solver. The source code of Z3 has only recently been released
to the public so there are not yet much available information
about its inner workings and best practices.
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Hence have we fine-tuned the constraint generation using an
semi-empirical approach and achieved a general speed-up of
a couple of factors over the old prototype.

We also compared the performance against CPLEX which
also can solve advanced scheduling problems using a tailor-
made CSP-solver. Unfortunately proved our implementation
to be several magnitudes slower than the CPLEX-suite due
to our modelling of discrete and consumable resources. Using
only unary resources, corresponding to the classical job-shop
problem, the performance seems to be more or less on par.

We conclude that Z3, as of now, is not a good match for
solving these advanced scheduling problems, although there
is a chance that future development will increase the per-
formance and that literature about programming-practices
with Z3 will be released, which will aid us in achieving a
better performance, i.e. many techniques that intuitively
were expected to increase the performance actually decreased
it, e.g. bi-section, assumptions, regeneration of constraints,
etc..

10. FURTHER WORK
• Syntactic sugar in the grammar, e.g. for declaring
multiple similar task.

• Implement the use of the OR-operator on resources.

• In [2] it is argued that redundant constraints, that is
constraints expressing the same but modelled in slightly
different ways, in some cases can help the solver in
finding solutions faster. This should be investigated if
also holds for Z3.

• Use a weighting scheme to support multiple objectives.

• Use a weighting scheme to better support the use of
soft-constraints.

• Further performance tuning.
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